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ABSTRACT 

The paper presents a novel procedure to support the preliminary design of anchor piles for floating 
offshore wind facilities. As Floating Offshore Wind Turbines (FOWTs) operate in a complex marine 
environment, under extreme events, they would be subject to load actions from impetuous wind, steep 
waves and strong currents. Under these conditions, tensile loads transmitted by the FOWT structure 
may become critical for the piles, particularly when they are used with vertical moorings. The tensile 
capacity of piles driven in sand is commonly estimated with the use of cone penetration test methods 
(CPT-methods), while an insight into the deformation can be achieved with the use of load-transfer 
approaches. However, there are still uncertainties on what should be the most suitable formulation to 
be used among the available ones. The approach proposed in this work combines Finite Element (FE) 
and metamodeling techniques to analyse the response of pile anchors driven in sand and subjected to 
pull-out load. The FE model used in the study is a simple but effective solution to reproduce the 
response of anchor pile subject to monotonic load and is used to train a metamodel. Differently from 
FE model, which computational expense limits the use for probabilistic analyses, a metamodel can be 
used to perform some sensitivity analysis at negligible computational cost. The procedure on how to 
build a metamodel based on a reliable FE model is here illustrated for open-ended driven piles installed 
in sand and subjected to drained monotonic tensile loading. 
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1. INTRODUCTION 

The paper proposes the application of metamodeling technique as a supporting tool for the preliminary 
design of offshore foundations for floating offshore wind turbines. Contrarily to the traditional bottom-
fixed solutions used in shallow waters, floating structures are used in deep water sites. The floater is 
secured to the seabed through mooring lines and anchors for what significant experience derives from 
the O&G sector. However, the conditions for wind facilities are different and investment savings may 
arise from optimized anchors (Myhr et al., 2014).  

In this work the case of driven pile anchors used for tension-leg platform floating structures is analysed. 
The piles are considered to be installed in homogeneous sand deposit, while the load deriving from the 
floater is a pure vertical tensile load. Traditional methods to estimate the pile capacity in offshore 
conditions are the well-known CPT-methods and a unified solution has been recently proposed 
(Lehane et al., 2020a). However, the information provided by these methods is limited to the pile 
capacity only. The pile in-service performance can be better investigated with the use of load-transfer 
methods for what several formulations are available (Bohn et al., 2017), but uncertainties arise when 
selecting the most suitable for a certain site condition. Finite Element (FE) models are an alternative 
and powerful solution to investigate the problem providing a large number of output quantities, which 
reliability is a function of the model complexity (Said et al., 2008; Yang et al.,2019; Han et al., 2020).  

However, the use of these methods for practical design requires good experience by the designer. This 
might limit their usage, particularly when facing preliminary design activities where several variables 
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must be considered and the designer wants a quick and easy-to-use solution. In this stage of the design, 
it is common to use probabilistic approaches to identify the most promising solution, and the FE model 
cannot be suitably coupled with these methods because of their computational cost.  

The response of the computationally expensive model can be similarly reproduced by a new but fast-
to-evaluate mathematical model named metamodel. The metamodel, or surrogate model, is a model of 
another model and it consists of an analytical relation between the model input and its output variables. 
The metamodel is trained by some input-output combinations of the numerical model. Once 
opportunely calibrated it can be used to reproduce the accurate numerical model response with an 
irrelevant computational cost, and its application in the civil engineering context has been proved (Toe 
et al., 2018; Marelli and Sudret, 2018; Lambert et al., 2021). Various types of metamodels can be used 
to the scope, from complex Neural Network (Papadrakis et al., 1998) and Kriging (Martin and 
Simpson, 2005) methods, to easier-to-construct polynomial models (Fang and Horstemeyer, 2006), 
rather than Support Vector Regression models (Clarke et al., 2005). In this work, the Polynomial Chaos 
Expansion (PCE) method is adopted (Sudret, 2008).  

In this paper, the use of the PCE metamodel is tested in the offshore geotechnical field. A numerical 
strategy to build a 2D FE model of the anchor pile installed in a homogeneous sand deposit is 
developed. The strategy allows to define the metamodel, with the identification of opportune input 
parameters and output indicators to be estimated. A parametric study is carried out defining a sort of 
‘numerical experimental’ database. The input-output combinations of this study are used to generate 
the PCE metamodel. The PCE accuracy is measured and its reliability as a predictive tool for the pile 
design is tested by comparing it with some experimental data from the literature.  

The PCE metamodel is tested for a simple FE model but proved able to replicate its response with 
good accuracy and might be extended to more complex case studies following the same approach. 

2. THE POLYNOMIAL CHAOS EXPANSION (PCE) METAMODEL TECHNIQUE  

In engineering design, the physical systems are commonly represented by a mathematical model which 
depends on the combination of different input parameters. The model will provide a certain response 
through the use of simple analytical formulas or complex sets of partial differential equations. The 
latter are generally solved by using specific numerical methods, like the finite difference or finite 
element methods. However, the input variables that characterise the model (i.e., geometry, material 
properties, loads, etc.) can have many uncertainties, which in turns result in a relevant randomness of 
the model response. This is particularly true for any offshore foundation design problem. The 
numerical model can then be used to investigate the system response to various conditions, but its use 
remains limited in the design context because of the time cost of the simulations. 

In the following the main characteristics of the PCE are illustrated and the method for calibrating and 
validating the metamodels are introduced. 

2.1 Details of the PCE 

Given a certain physical system, its behaviour may be ideally represented by a mathematical model f, 
that provides a deterministic relation between the system’s input and output. Now, denoted 𝒙 ≡
{𝑥1, … , 𝑥𝑁}𝑇 the set of input parameters of the problem, the evaluation f(x) would return the set of 
output quantities 𝒚 ≡ {𝑦1, … , 𝑦𝑀}𝑇. When considering a FE model, x may be related to its geometry 
rather than to the material properties or any other model parameter. On the other hand, the output y, 
generally named model response vector, can be a collection of some model behavioural features (e.g., 
reaction forces, strains and stresses at relevant nodes of the mesh, etc.). The model f cannot have an 
explicit expression, but it can be approximated by a new function, g, that is the polynomial chaos 
expansion of the model response vector (Blatman, 2009). The polynomial chaos decomposition of the 
original model is defined as the linear combination of selected multivariate orthonormal basis 
(𝜓𝑘(𝒙))

𝑘∈ℕ
 and their corresponding coefficients 𝛼𝑘 as: 

𝑔(𝒙) = ∑ 𝛼𝑘𝜓𝑘(𝒙)

𝑘∈𝐾

≈ 𝑦 (1) 

where 𝐾 ∈ ℕ is the number of terms in the expansion and the PCE function is here illustrated for a 
generic output variable (i.e., M = 1). The polynomial basis obeys an orthogonal and normal rule, that 
is their inner product is 〈𝜓𝑛, 𝜓𝑚〉 = 𝛿𝑛𝑚, where nm is the Kronecker delta function. Each family of 
orthonormal polynomials is associated to a certain distribution type (e.g., Hermite polynomials for 
Standard Gaussian distribution) and should be selected according to the input measure. Once an 
appropriate set of basis functions is selected, the problem reduces to the determination of the 
coefficients k. They have to be computed in order to minimize the distance between the model 
function f(x) and its approximation g(x). A classical least-square analysis can be carried out to compute 
the coefficients: 
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𝜶 = (𝛼𝑘)𝑘∈𝐾 = argmin
𝛼∈ℝ𝐾

𝔼 [(𝑓(𝑥) − ∑ 𝛼𝑘𝜓𝑘(𝑥)

𝑘∈𝐾

)

2

] (2) 

where 𝔼 is the mean operator. 

2.2 Training the PCE 

In order to train or calibrate the PCE of a FE model a certain number of input-output combinations is 
required to create the input vector x and the model evaluations f(x) given by the FE simulations. Once 
identified the problem position, that means the selection of the problem’s input and the relevant output 
to be analysed, a strategy should be adopted for sampling the input variables within reasonable ranges. 
Then, defined n the size of the training sample, a PCEn can be built by using Eq. (1) and Eq. (2) and 
its accuracy will be a function of n. 

In the following the Latin Hypercube Sampling technique (LHS, McKay et al., 1979) is used to create 
the sample. It is a space-filling sampling method for what each variable is divided within its range of 
variability into a number of intervals equal to the sample size. Then, the sample points are randomly 
selected within the interval in order to have a uniform distribution of each input variable in their 
domains. Contrarily to the popular Monte Carlo Simulation method, that is a random sampling method, 
the LHS allows to have a randomly defined sample while assuring an optimum and uniform coverage 
of the input variables. This choice would lead to an expected uniform accuracy of the trained PCE 
within the whole domain of each input parameter. 

2.3 The Leave-One-Out Cross-Validation method 

After defining the method to build the metamodel a validation strategy to assess its reliability must 
also be defined before allowing its use as a surrogate of the FE model. An efficient strategy to validate 
any metamodel is the Cross-Validation (CV) method and in this work the Leave-One-Out (LOO) 
option is adopted. 

The CV technique (Stone, 1974) consists on dividing the defined sample into two subsamples. A 
metamodel is then built from one subsample, which can be named as the training set, and its 
performance is evaluated by comparing with the other sample, which in turn is the validation set. In 
the LOO method, the training set contains all but one of the input-output combinations of the original 
sample. The latter being used as the validation set to compute the metamodel accuracy. 

Named x(i) the validation set, the metamodel is built for the remaining training set and the predicted 
residual of the i-th observation is defined as: 

∆(𝒊)= 𝑓(𝒙(𝑖)) − 𝑔(−𝑖)(𝒙(𝑖)) (3) 

Which is basically the difference between the FE observation and the PCE prediction in our case. The 
expected error of the metamodel is then computed for the whole sample size and the LOO error is 
defined as: 

𝐸𝑟𝑟𝐿𝑂𝑂 =
1

𝑁
∑(∆(𝑖))

2
𝑁

1

 (4) 

However, in practice it is common to compute the normalized LOO error defined as: 

𝜀𝐿𝑂𝑂 =
𝐸𝑟𝑟𝐿𝑂𝑂

COV(𝑓(𝑥))
 (5) 

Where the empirical covariance of the output quantity is considered. The normalized LOO error is also 
commonly reported as 𝑄2 = 1 − 𝜀𝐿𝑂𝑂, that is the predictive capacity factor of the metamodel. 

3. THE FINITE ELEMENT TESTING PROGRAMME 

The paper focuses on the monotonic response of steel open-ended anchor driven piles installed in 
homogeneous sand deposit and subjected to a pure vertical tensile load. A numerical strategy is first 
defined to build the FE model of the pile by using six input parameters. Then, according to the LHS 
technique, a sample of these input variables is created and the simulations are run. The results of the 
parametric testing program are illustrated and the output variables for training the metamodels are 
identified. 

3.1 FE model details 



4 

The pile FE model is represented with a 2-dimensional axial-symmetry, thanks to the geometrical and 
loading conditions of the considered case study. The model is built considering a wished-in-place pile 
where the installation effects deriving from pile driving are implemented in the soil stress state. The 
pile is installed in sand and total stress, small-strain, static simulations are performed. In this context, 
the problem position is defined to build the FE model (i.e., the f function) starting from six input 
variables that are resumed in Table 1. 

Table 1. Input parameters of the FE model and range of variation for the testing programme. 

Input parameter Symbol Unit Range Chow, 1997 Rücker et al. 2013 

      Pile diameter D m 0.25 – 1.00 0.324 0.711 

Slenderness ratio L/D - 10 – 60 34.88 24.77 

Thickness ratio D/t - 15 – 80 25.51 56.88 

Soil density Dr % 10 – 100 66.62 57.00 

Water level w - 0.0 – 1.0 0.275 0.02 

Interface angle  degree 20.0 – 35.0 26.8 29.0 

      
 

The first three concerns the pile geometry and both length and pile wall thickness are normalized by 
the diameter. Then, there are two parameters of the site conditions. As said, a homogeneous deposit is 
considered in the study and a uniform soil relative density is selected as problem input. The water level 
parameter is introduced to account for the location of the water table level in the site, and its depth 
with respect to the ground surface is defined as function of the model height (i.e., zw = w*(L+10D)). 
This parameter is considered because both the FE and PCE models are then tested with some data from 
literature that are not in offshore sites. 

The FE model is built starting from the geometrical input that define the model geometry, which 
extends laterally for 15 diameters and vertically for 10 diameters below the pile base. Horizontal and 
vertical restraints are then applied at the complementary outside sides. The pile is modelled as a 
uniform solid assuming a fully plug failure and a linear elastic material is assigned with equivalent 
properties computed according to its cross section. A uniform mesh having size of D/8 is used in the 
area close to the pile perimeter, while it then becomes coarser moving to the external model bounds as 
illustrated in Figure 1. 

 
Figure 1. FE model of the anchor pile and boundary conditions. 
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The sand deposit is applied a linear elastic constitutive model and obeys a Drucker-Prager plastic 
failure criterion. The soil properties are assigned as function of an artificial cone resistance that is 
derived from the two site input parameters. The cone resistance is computed by considering the 
assumption of a homogeneous deposit (i.e., Dr = constant) according to the equation from 
Jamiolkowski et al. (2003): 

𝑞𝑐,𝐹𝐸 = 𝑝𝑎 ∙ 17.61 ∙ (
𝑝′0

𝑝𝑎
)

0.50

∙ 𝑒𝑥𝑝(3.10 ∙ 𝐷𝑟) (6) 

Where pa=101.3kPa and p’0 is computed considering an earth pressure coefficient at rest 𝐾𝑜 = 1 −
𝑠𝑖𝑛𝜙𝑐𝑣 and ’cv = 32o. The artificial cone resistance allows to assign all the soil properties to vary with 
depth in the model, thus accounting for the stress state variation. From the cone resistance data, the 
elastic small-strain shear modulus of the soil is computed using the equation modified by Chow (1997) 
as: 

𝐺𝑚𝑎𝑥 = 𝑞𝑐 ∙ [𝐴 + 𝐵𝜂 − 𝐶𝜂2]−1 (7) 

Where A = 0.0203; B = 0.00125; C = 1.216x10-6; 𝜂 = 𝑞𝑐(𝑝𝑎𝜎′𝑣)−0.5 and the soil Poisson’s ratio is 
considered equal to 0.2. The soil plastic strength parameters are then computed using the well-known 
relationship proposed by Kulhawy and Mayne (1990) for the soil peak friction angle and computing 
the dilatancy according to the critical state angle. 

As for the soil-pile interface property, a simple Coulomb-like frictional law is assigned with a penalty 
coefficient given by the tangent of the last input parameter provided in Table 1. The final step for 
building the pile FE model consists of assigning a soil stress state that would consider the effect due 
to the pile driving installation. Therefore, the radial stress around the pile shaft is modified according 
to the recently proposed Unified CPT-method (Lehane et al., 2020a). 

3.2 Results of the FE testing program  

The FE model of any driven pile installed in a homogeneous sand deposit can be built by following 
the simple procedure described above and using any combination of the six input parameters identified. 
The procedure is used to produce the input/output data required to calibrate the metamodel. First, a 
sample is built using the LHS technique. Different ranges for each input are identified as described in 
Table 1. They are selected to cover the geometrical properties of existing pile database, which are then 
used to test the PCE prediction capacity. A minimum value of 10% is set for the soil relative density, 
while water table is free to vary from dry to fully saturated condition. The interface angle is varied 
within the range defined by Han et al. (2018) after studying the interface friction strength as function 
of different sand-steel properties. A sample of size 100 is created for the input, the FE models are built 
and relevant simulations run. The results are illustrated in Figure 2 with curves reporting the 
normalised vertical load (𝑉̅ = 𝑉/(𝐷 ∫ 𝜎′𝑣𝑑𝑧)) and displacement (𝑤̅ = 𝑤/𝐷). 

 
Figure 2. Results of the FE testing program. 
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The FE results are the analysed to collect the output quantities that form the model response vector, y. 
According to the load-displacement results, two outputs are identified: the ultimate load and the curve 
stiffness at a load rate of 50% the ultimate capacity that was recognized as a service level by Lehane 
et al. (2020b). The two outputs are thus collected by each simulation and gathered in the model 
response vector to calibrate the PCE metamodel. 

4. PCE ASSESSMENT AND EXPLOITATION  

4.1 Accuracy of the PCE 

Given the 100 data of the LHS sample, two PCE metamodels are built by using Eq. (2) to compute 
their coefficients. The first is trained to evaluate the ultimate pull-out capacity of the driven pile and 
the second to estimate the load-displacement stiffness at the defined service load level. The input data 
generated by the LHS method have a uniform distribution and the Legendre polynomial basis are used 
in the computations. The metamodels are built with the LOO method, therefore the PCE are generated 
by using training set containing 99 data. Their evaluations, compared to the FE simulation results, are 
reported in Figure 3 where the best fit line is represented by a continuous black line. 

 
Figure 3. PCE predictions vs FE observations for: (a) normalized ultimate pile capacity, 𝑉̅, and (b) 
normalized stiffness, 𝐾̅ = 𝑉̅/ 𝑤̅, at service load level (50% of 𝑉̅). 

The two plots only provide a qualitative representation of the metamodels prediction capacities, but 
their effectiveness is measured through the LOO errors defined in Section 2. A normalized error of 
0.110 (ErrLOO = 0.069) is measured for the limit capacity PCE, while it reduces to 0.060 (ErrLOO = 
327.46) for the stiffness outcome. The use of larger sample size for training the two PCE metamodels 
might lead to improved capacity of predictions, but the obtained measures are considered sufficient in 
this study. 

4.2 PCE vs FE predictions of experimental evidence 

Once assessed the PCE metamodels can be used, for any input combination, as predictive tools of the 
two output indicators. Here a rapid demonstration is proposed by considering two experimental data 
available in the literature (Chow, 1997; Rücker et al. 2013) and for what the measured input data are 
reported in Table 1. All the input parameters of the two considered piles are given in the corresponding 
papers. Being natural deposits, they are not perfectly homogeneous as considered in the FE approach 
of this work. Therefore, the average soil relative densities reported in Table 1 for each site have been 
estimated from the cone tip profiles given in the references and using Eq. (6).  

The two PCE are used to evaluate the outputs by entering the input data. Similarly, the modelling 
procedure described in section 3.1 is applied to build the FE models of the two piles. The results of the 
two models (i.e., the FE model and its surrogate PCE) are reported in Figure 4 together with the 
experimental data. The PCE can produce a simple bi-linear curve only given the two selected output 
that is able to estimate, but its shape is very similar to the curve predicted by the simplified FE model. 
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Figure 4. Comparison of PCE and FE evaluations of the experimental load-displacement curves of: (a) 
Chow (1997) and (b) Rücker et al., (2013). 

In terms of prediction accuracy, the PCE shows very good comparison with the FE approach that has 
trained the metamodel. The limit capacity is slightly underestimated in both cases, with relative errors 
of 6.22% and 11.70% for case (a) and (b), respectively. The measured errors are in accordance with 
the general normalized LOO error of prediction of the PCE. Similarly, the stiffness outcome is 
evaluated with an error of 11.22% for case (b) that reduces to only 1.22% in case (a). These estimations 
are again in accordance with the normalized error computed with the LOO approach. 

Finally, it is worth noticing that the comparison with the experimental data is excellent. The PCE 
metamodel proved able to predict the experimental response of the two piles with a very small error. 
At the same time, it has to be remembered that the PCE accuracy is function of the FE model reliability. 
In fact, the results of Figure 4 illustrate how the FE approach adopted for the study can also provide 
reliable estimation of the experimental data, thus similar accuracy is expected by its surrogate model. 

5. CONCLUSIONS 

A method for supporting the design of offshore foundation system has been proposed. The approach 
is alternative to the CPT and load-transfer methods commonly used for the design, as it makes use of 
the metamodeling (often referred as “surrogate” models) technique coupled to FE modelling.  

The research has particularly focused on the design of anchoring systems for tension-leg platforms, 
with the scope of providing a novel procedure for the preliminary design of the foundations of floating 
offshore wind turbines. The main target of the procedure is to provide a robust, time and cost-effective 
tool. Above all the possible anchoring solutions, the response of driven piles in sand is analysed but 
the procedure could be similarly extended to other anchor types. 

The PCE metamodel type is used to estimate some behavioural features of the FE model. It creates an 
approximation function that represents the correlation between the input parameters of the FE model 
and its output. The approximation function then provides a deterministic algorithm for any input 
combination and can be easily coupled to traditional probabilistic approaches that are commonly 
employed in preliminary design.  

The metamodel is built for a simple but effective FE model of the pile anchors and proves to lead to 
accurate results with only 100 input data used for its calibration. In fact, it is tested as predictive tool 
to replicate some experimental tests available in literature. 

The obtained results have highlighted that: 

1. The approach is promising, and a good prediction capacity is obtained for a very small amount 
of data. 

2. The PCE accuracy can be improved by simply increasing the training sample size or by varying 
some feature of the metamodel (i.e., input distribution and polynomial basis; integration 
strategy to compute coefficients; etc.). 

3. The outcome of the approach is a mathematical equation that can be used for any input 
combination. 

The approach provides an alternative to the use of complex and time-cost expensive FE models. The 
metamodel requires some input data deriving from running simulations to calibrate it, but then the 
algorithm is able to fill the gap remain uncovered by the FE testing programme. The use of surrogate 
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models in engineering fields is increasing and the study has demonstrated how they can be easily 
applied in the offshore geotechnical engineering context. 
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